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Abstract

In this paper we derive bounds and a limit for the relative speed in a proba-
bilistic system that we call The Frog Problem. The lower bound result is found
using a martingale inspired by [1]. Additionally we include some combinatorial
remarks about this system.

1 Introduction

Consider the following system where there are K frogs, or nodes, on a lilly pad, i.e a
cycle graph. We say that at each iteration each of the K frogs has a probability p of
jumping up to an identical lilly pad a unit height above. So for any fixed iteration we
can examine at what heights the frogs are positioned. We call two frogs neighbors if
on the original cycle graph at height the are neighbors in the graph theoretic sense.
We have one additional restriction: After all the frogs have jumped (or not jumped)
during a given iteration and a frog is more than one unit above either of its neighbors
then it must return to the lilly pad one level below.

In order to define some notion of speed of increase of all the frogs we define Xn,k

as a random variable for the number of iterations it takes for frog k ∈ {1, ..., K}
to jump from level n to level n + 1 once both of their neighbors are on level n,
for n ∈ {1, ..., N}.We also define Ln(i, j) as the relationship indicator function, i.e.
Ln(i, j) = 1 if the node (n, i) and (n+ 1, j) are connected, and 0 otherwise. Let r be
E
∑

j Ln(i, j) for all i.
Next we define the random variable T (N,K)the time it takes for all K frogs to

jump past the N th level i.e.,

T (N,K)
def
= max

k1,k2,...,kN
{(

N∏
n=2

Ln−1(kn−1, kn))
N∑

n=1

Xn,kn}.

We want to introduce some measure of asymptotic speed. Thus we define

S(K)
def
= limN→∞

N
T (N,K)

. Our goal in this paper is to find bounds and limK→∞ S(K).
Additionally we include some bounds on slightly modified systems and combinatorial
results.
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2 Finite K and Markov Chains

We can theoretically construct for finite K a Markov chain process that gives us
the asymptotics about the time spent in each state, i.e. the stationary distribution.
Standard references can be found in Chapter 11 of Grinstead’s book [2].

Figure 2.1: A visualization of the different states given two or three frogs
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The existence of the speed S(K) comes directly from the fact that any absorbing

Markov chain will be absorbed in finite time. This leads to our idea of finding some
bounds and convergence properties of S(K) as K goes to infinity. The main findings
are presented in the next section.

3 Main Theorem

In this section, we explore the bounds and the limits in a slightly different problem.
In this case, the frogs cannot jump before the neighbors reach the same level, i.e. we
eliminate the situations when all of the frogs on a chain jump at once. This problem
was first approached by Chang and Nelson. The proof of our theorem also inherits
their technique of martingale 1.

1references about Martingale can be found in [3]
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Theorem 3.1 If the moment generating function of the time it takes for a frog to
jump exists for some positive θ0

2

ϕ(θ)
def
= E[eθXn,k ] < ∞ for 0 < θ ≤ θ0

then the asymptotic speed for all of the frogs to jump higher than some fixed level
S(K) is bounded below 1

t∗
, where

and
t∗ = inf{t ≥ 1|rm(t) < 1}

and
m(t) = inf

0<θ<θ0
{e−θtϕ(θ)}.

Lemma 3.2 Under the assumption Theorem 3.1, let Fn be the minimal σ-algebra
generated by {Xn,k, k = 1, ..., K,m = 1, ..., n}. Let

Mn(θ) =
1

(rϕ(θ))n

K∑
k1=1

K∑
k2=1

...

K∑
kN=1

(
n∏

m=2

Lm−1(km−1, km)

)
eθ

∑n
m=1 Xm,km

Then {Mn(θ),Fn, n ≥ 1} is a nonnegative martingale for θ ≤ θ0.

Proof. We show that E[Mn+1(θ)|Fn] = Mn(θ). First observe that

E[Mn+1(θ)|Fn] =
1

(rϕ(θ))n

K∑
k1=1

K∑
k2=1

...

K∑
kN=1

E

 K∑
kn+1=1

(
n+1∏
m=2

Lm−1(km−1, km))e
θ
∑n+1

m=1 Xm,km |Fn


Since Lm−1(i, j) and for m ≤ n, are Fn-measureable,

E

 K∑
kn+1=1

(
n+1∏
m=2

Lm−1(km−1, km))e
θ
∑n+1

m=1 Xm,km |Fn


= (

n∏
m=2

Lm−1(km−1, km))e
θ
∑n

m=1 Xm,km )E

 K∑
kn+1=1

Ln(kn, kn+1)e
θXn+1,kn+1 |Fn


Because the random variables are iid,

E

 K∑
kn+1=1

Ln(kn, kn+1)e
θXn+1,kn+1 |Fn

 =
K∑

kn+1=1

E(Ln(kn, kn+1)E(eθXn+1,kn+1 )

= rϕ(θ)

Simple substitution completes the proof.

2in the case where Xi,j ’s are geometric, θ0 = − ln(q)
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Lemma 3.3 For the system as previously defined,

lim sup
N→∞

T (N,K)

N
≤ t∗, a.s.

Proof. It follows from our definition of T (N,K) that,

eθT (N,K) = max
k1,...,kN

{
N∏

n=2

Ln(kn−1, kn)e
θ
∑N

n=1 Xn,kn

}
≤ (rϕ(θ))NMN(θ).

Since Mn(θ) is a martingale and E[M1(θ)] = K, we have the following inequality,

E
[
eθT (N,K)

]
≤ K

r
(rϕ(θ))N .

Next, using the above inequality and Markov’s inequality yields

P

(
T (N,K)

N
> t

)
= P

(
eθT (N,K) > eθNt

)
≤ e−θNtE

[
eθT (N,K)

]
≤ K

r
(e−θtrϕ(θ))N

Thus,
∑

N P
(

T (N,K)
N

> t
)
< ∞ if (e−θtrϕ(θ)) < 1, i.e. rm(t) < 1. By Borel-Cantelli

lemma, we have

P

(
lim sup
N→∞

(
T (N,K)

N
> t

))
= 0

which implies

lim sup
n→∞

T (N,K)

N
≤ t∗, a.s

Proposition 3.4 In our specific case where Xi,j are approximately geometric,

ϕ(θ) =
peθ

1− qeθ

Proof.

ϕ(θ) = E[eθXn,k ] =
∞∑
n=1

pqn−1eθn =
p

q

∞∑
n=1

(qeθ)n =
peθ

1− qeθ

Theorem 3.5 Given K2 iterations, the probability that all frogs have passed level N ,
where N = aK2, a < −lnq

lnr
, equals 1− αβK2

where β < 1. That is,

P (T (aK2, K) ≤ K2)
K→∞−→ 1
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Proof.

P (T (N,K) > K2) = P (eθT (N,K) > eθK
2

)

≤ e−θK2

E[eθT (N,K)]

≤ e−θK2K

r
(rϕ(θ))N

= e−θK2K

r

(
rpeθ

1− qeθ

)N

=
K

r


(

rpeθ

1−qeθ

)a
eθ

K2

Since
(

rpeθ

1−qeθ

)
< r and note that r = 3 in this case, we have

(
rpeθ

1−qeθ

)a
eθ

 < 1,

the expression goes to 0 exponentially. This completes the proof.

Corollary 3.6 The number of steps it takes to get to the aK2 level in the frog case
is also ≤ K2 a.s.

Proof. The proof comes from the observation that in the speed of the system we
describe in the current section is less than that of our initial system.

4 Different types of lilly pads

4.1 Segment case

Here we are going to assume that the frogs sit on a line segment instead of on a circle,
i.e. the first and last frogs are not connected.

Lemma 4.1 If the speed S(K) is still defined as above, then S(K) ≥ S(K + 1)

Proof. The proof can be obtained by simple reasoning. When we have K+1 frogs,
the speed of the first K frogs is the same as S(K), so adding one more frog at the
end cannot increase the speed of the system. Therefore S(K) ≥ S(K + 1)

Corollary 4.2 limK→∞ S(K) exists and the limit is greater than 1/t∗, where t∗ is
the value obtained in Theorem 3.1

4.2 No restriction

In this case, the frogs have no restrictions and can jump independently

Proposition 4.3 T (N,K) = maxi=1,...,K{
∑N

j=1 Xj,i}
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4.3 Maximum restriction

In this case, each frogs have to wait for all frogs to reach the same level to start
jumping.

Proposition 4.4 Given that we start at a state with n frogs on the bottom level, then
the expected iteration for the lowest level to increase is

n∑
i=1

(
n

i

)
(−1)i+1 1

1− qi

Proof. Since the frogs on the bottom level do not have to wait for their neighbors,
the time it takes a bottom frog to go up one level is geometrically distributed. Then
the expected time equals the expectation of n geometric random variables. Let Y =
max{X1, ..., Xn}. Then

E[Y ] =
∞∑
k=0

P (Y > k) =
∞∑
k=0

(
n∑

i=0

(
n

i

)
(−1)i+1qki)

=
n∑

i=1

(
n

i

)
(−1)i+1

∞∑
k=0

qki =
n∑

i=1

(
n

i

)
(−1)i+1 1

1− qi

Remark: Since the geometric distribution can be approximated by the exponential
distribution, the expected time can be obtained by finding the mean of the maximum
of n exponential random variables. The result is well-known,

E[max{X1, ..., Xn}] =
n∑

i=1

1

i

Theorem 4.5 The expected time to get to level N is N
∑K

i=1

(
K
i

)
(−1)i+1 1

1−qi

Proof.

E[T (N,K)] = E[
n∑

i=1

max{Xi,1, ..., Xi,K}] =
n∑

i=1

E[max{Xi,1, ..., Xi,K}] = N

K∑
i=1

(
K

i

)
(−1)i+1 1

1− qi

5 Combinatorial results

Proposition 5.1 The number of possible states of K frogs on a directed cycle are
enumerated by the central trinomial coefficients, i.e. number of states =

(
K+1
0

)
2

Proof. Upward, downward and horizontal steps increase the current level by 1, -1
and 0 respectively. Then the number of states is equal to the number of combinations
of x′

is, where xi ∈ {1, 0,−1}, such that
∑K+1

i=1 xi = 0. That is equal to the free
coefficient of x in the expansion of (1 + x + x−1)K+1, which is the (K + 1)th central
trinomial coefficient.
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Proposition 5.2 If we count the number of states by start counting from a frog on
the lowest level, the number of such states is the (K + 1)th Motzkin number.

Proof. The number of such states is the number of lattice paths that go from (0, 0)
to (0, K+1) without crossing the x-axis. This is exactly the definition of the Motzkin
number.

6 Future Research

One possible goal for future research is to find a similar bound on the time that the
system first reachs level N. The current problem is that we cannot construct this
value the same way we did with T (N,K). It possibly is the minimum of a sum of
the Xi,j’s, and if we can find the exact formula for it we can come up with a similar
bound by using ϕ(θ) where θ < 0.
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